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Abstract -This paper addresses recurrent neural architectures 
based on coupled bifurcating nodes that exhibit chaotic 
dynamics. The nodes are composed of logistic recursive maps, 
which interact through parametric coupling, i.e., through 
dynamic modulation of the bifurcation parameters. These 
networks are used to implement associative memories in which 
the coding of binary strings is done through spatio-temporal 
attractors with period-2 cycles. The associative performance of 
such arrangements is measured under several levels of analog 
noise in the prompting pattern (initial conditions of the coupled 
recursions). The phenomena of unbalanced power of attractors 
is detected. The paper also identifies and analyzes the issue of 
fragmented (non-convex) regions associated to the attractors 
representing binary zeros and binary ones of the stored strings. 
This subject is approached in the context of associative 
networks operating under analog noise and the related 
degradation of performance. A simple pre-processing technique 
aiming to overcome the mentioned fragmentation of basins of 
attraction resulted in marked improvement of network 
performance, particularly in highly noisy situations.  
 
 

I. INTRODUCTION 
 
   Artificial Neural Networks employing nodes with complex 
dynamics is a growing subject in both arenas, theory and 
application [1-5]. We have worked in the past years in the 
development of associative architectures based on RPEs – 
Recursive Processing Elements, producing several design 
methodologies and interesting results such as the superior 
immunity to prompting noise, by factors of 1.5 to 2.0 with 
respect to Hopfield associative networks (see Table I in 
Section II for a comparison) [6-9]. These RPEs nodes are 
parametric recursions, such as the logistic map, which 
interact through parametric coupling, self organize, and make 
the network evolve to spatio-temporal attractors that encode 
stored patterns. This strategy is used to implement 
associative memories in which the coding of binary strings is 
done through period-2 cycles [6-9]. 
   In the following section of the paper (Section II), we 
describe the main elements for the understanding of the 
operation and design of associative RPEs networks. In 
Section III, we present results on the characterization of 
pattern recovery performance under noisy prompting 

conditions and the characterization of the network’s 
landscape of attractors. This “landscape characterization” 
allows us to detect the unbalanced power of attractors under 
high levels of prompting noise. Section IV discusses the 
phenomenon of fragmented basins of the attractors in logistic 
RPEs nodes and relates it to the degradation of performance 
of associative RPEs networks. Then, Section V describes a 
successful method to cope with such a degradation of 
performance, and Section VI concludes the paper.  
 

 
 

II. SUMMARY OF PRINCIPLES OF NEURAL NETWORKS OF 
RPES NODES - BIFURCATING RECURSIVE PROCESSING 

ELEMENTS (RPES) 
 

   The local dynamics of the logistic RPEs nodes is defined 
by Equation 1, and its parametric coupling is expressed 
generically in (2). 
 
 

xi,n+1 =  pi,n . xi,n . (1-xi,n)                           (1) 
 

pi,n = f ( wij ; xj,n )                               (2) 
 

   In (1), n represents the discrete time, xi,n and xi,n+1 
represent consecutive values of the state variable for node i, 
and the pi,n is the bifurcation parameter of the logistic 
recursion. Figure 1 shows illustrative return maps for a 
generic parametric recursion Rp relating xi,n and xi,n+1. 
 
 

 
Fig. 1. Illustrative plot showing a family of parametric recursions, with three 
return maps relating xn and xn+1. According to the value of the numeric 
parameter p, the recursion Rp maps the values xn into different values of xn+1. 



   In the Equation (2) above, f represents some function or 
functional, adequate for the formation of collective behavior, 
and its form for our studies is specified ahead. The wij are the 
synaptic connections from neighboring neurons j, and xj,n 
their outputs at time step n. Figure 2 represents the structure 
of an associative network of logistic RPEs with full 
connection among them. Each circle “L1 to L4” represents a 
bifurcating recursion, i.e., a logistic map in these studies.  
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Fig. 2. Illustrative associative network composed of four logistic RPEs with 
full connection among them. Each circle “L1 to L4” represents a logistic 
recursion. 
 
   The parametric connection among nodes is provided 
through appropriate changes in the bifurcation parameters of 
the logistic nodes (parameters p1 to p4 in the illustration of 
Figure 2). These changes in the pi are driven by the internal 
states which represent the network activity (x1,n to x4,n), 
according to the generic Equation (2) above, which in our 
studies assumes the specific form of Equation (3) [8,9]: 
 

∆pi =  - scale . (xi - avg).( Σj  wij . (xj - avg) )  - decay    (3)                          
 

 
   In (3), ∆pi represents gradual increments in the bifurcation 
parameter, the constant avg is the average value of the state 
variables x, and the constants scale and decay have to be 
chosen to promote adequate balance between the chaotic 
behavior during the search for stored patterns and the ordered 
behavior of periodic attractors, once this search is achieved.  
   We will not have the space here for a complete explanation 
of this process, but instead we will refer to the papers 
presented in two previous IJCNN conferences, in which the 
design of associative RPEs networks was developed in detail 
[8,9]. We will show though the bifurcation diagram of the 
logistic RPE node in Figure 3 and mention that for stabilized 
networks which already have recovered a given stored 
pattern, the node’s xi trajectory is a period-2 cycle such as the 
one indicated in the diagram, in which the oscillation 
happens among two values A and B, and the pi bifurcation 
parameter is settled at a given value p, related to the cycle A 
and B, according to the bifurcation diagram.  
 

Bifurcation Parameter  p 
 

Fig 3. The bifurcation diagram for the logistic recursion. The horizontal 
axis represents the value of the bifurcation parameter p, and the vertical 
axis represents the values visited in the long term by the state variable x. 
The marked points A ( x = 0.81) and B ( x = 0.50) exemplify the period-
2 cycle that emerges when p is 3.25. 

 
   During the use of the associative network, the prompting 
pattern defines the initial state of the network (the values 
xi,0), and the coupled logistic elements are then free to evolve 
in time. In their evolution, the RPE nodes possibly exercise 
different modalities of dynamical behavior, and they 
eventually reach accommodation, with all the pi settling at a 
lower limit pmin, and all the state variables xi perform period-
2 cycles, defined by the pair of values A and B. This period-2 
oscillation is sufficient for the coding of binary strings, since 
we have two possible phases of oscillation. In this way, when 
the network stabilizes, some of the nodes oscillate in a given 
phase, coding the zeros of a binary string previously stored in 
the network, and some of the nodes oscillate in the opposite 
phase, coding the ones.  
   As in Hopfield networks, the synaptic connections wij 
among nodes are calculated from the M binary patterns Pk 
(binary strings) to be stored in the network, according to 
Equation (4) [9-11]: 
 

wij    =     Σ      (Pi,k  . Pj,k)   ,   i ≠ j                           (4) 
k=1:M              

                                                                                   .   
 

   The terms Pi,k and Pj,k in the summation in (4) are two bits 
of the stored pattern Pk which are represented, respectively, 
by the long term cyclic activities x of the nodes i and j. In 
order to have (4) expressing the correlation among nodes i 
and j, the terms Pi,k  and  Pj,k have to be expressed (when used 
in the equation above) in the bipolar representation, i.e., 
having values +1 or –1. As mentioned before, many 
additional details on the design of associative RPEs networks 
can also be found in [8,9].  
   It is interesting to show here some comparison between the 
performances of associative RPEs networks and Hopfield 
networks [8]. Table I presents results with both architectures 
being used to store binary strings which are later recovered 
from distorted versions of them. 



Table I – Hamming Recovery Error for Associative 
Memories of type Hopfield and RPEs 

(100 nodes, with load 
M=3 patterns) 

Average Hamming 
Error in Hopfield 

Architecture 

Average 
Hamming Error 
in RPEs Network  

Prompting Noise 10% 0.00% 0.00% 

Prompting Noise 20% 0.33%  0.18%  

Prompting Noise 30% 2.12% 1.26% 
 

 

   The table presents performance results with three different 
levels of input distortion, measured as a percentage of flipped 
bits in the prompting pattern received by the associative 
arrangements. The performance of each associative 
architecture is quantified based on the average Hamming 
error of the recovered pattern. We can see from Table I that 
the average recovery error is much smaller in RPEs 
networks.  
 
 

III. CHARACTERIZATION EXPERIMENTS ON THE PATTERN 
RECOVERY PERFORMANCE IN ASSOCIATIVE RPES NETWORKS 

AND ITS DEGRADATION WITH ANALOG PROMPTING NOISE  
 
   Figure 4 presents an illustrative Limit Set Diagram (LSD), 
a type of diagram used to represent the dynamical state of a 
given network under study [6,12]. In this particular LSD, we 
show the outcome of one of the experiments with RPEs 
networks with 100 coupled nodes programmed to store 
simultaneously 3 patterns. The recovery experiments 
presented in this and the following sections of the paper were 
carried out with prompting initial conditions distorted by 
analog noise. The solid line in the LSD represents the values 
xi,0, i.e., the noisy initial condition imposed to the 100 nodes. 
The horizontal axis represents / identifies the 100 nodes that 
compose the network, and right above each i (node number), 
we have two dots representing a limit cycle of period-2, 
which is exercised by the node once the network reaches 
stabilization. The series of circles surrounding some of these 
dots representing the limit cycles, defines one sample in time 
of the state variable vector (the values of the 100 xi), showing 
thus which nodes are oscillating in phase, and which nodes 
are oscillating in counter phase [6].  
   In the studies presented here, the level of analog noise in 
the initial condition is defined in a normalized form. Notice 
that when we are dealing with analog noise environments, 
the issue of the relative scales of the analog noise and the 
separation between the representatives of binary one and 
binary zero is an important issue. Therefore, for the 
characterizations that we perform, we define the level of 
analog noise by comparing its average magnitude to the 
distance |A-B|. This distance is the amplitude of period-2 
oscillations of the final state that represents the binary 
information. The so named “analog noise factor” is thus 
defined as the ratio <|noise|> / |A-B|. 

A

 B

 
Fig. 4. Limit Set Diagram (LSD) showing both the prompting pattern (initial 
condition) of a network, through the solid line linking the values xi,0, and the 
period-2 limit cycles exercised by the 100 nodes in the long term. Each node 
is represented in the horizontal axis (neuron number i), and the 
corresponding limit cycles are represented by the dot and circled dot right 
above each i. (Figure from [6]). The outcome corresponds to one of the 
stored patterns. 
 
 
   In Figure 5 we have a plot showing the evolution of the 
Hamming error in the recovered pattern at the network 
output (represented in the vertical axis), for arbitrary levels 
of analog noise in the initial conditions. The level of input 
noise is represented in the horizontal axis. The size of the 
network is 100 nodes and these particular experiments on 
degradation of performance with noise were conducted with 
networks storing 3 patterns, as mentioned before. We 
observe that virtually there are no errors in pattern recovery 
as long as the analog noise factor is bellow 0.35. 
   As we can see in Figure 5, as the level of analog noise 
becomes significantly high, with values for the noise factor 
close to 0.8 for example, the average level of error in the 
recovered patterns goes to 75 %. Such a percentage is 
measured by the average Hamming distance between the 
clean version of the prompting pattern and the observed 
output given by the network (as in Table I).  
 

 
 

Fig. 5. Error plot for arbitrary levels of analog noise in the range of noise 
factors from 0 to 2. The horizontal axis shows the level of prompting 
noise (noise factor) and the vertical axis shows the average Hamming 
error in pattern recovery. 



   In order to have a better understanding of the process of 
performance degradation in the recovery of patterns by the 
associative structure, we developed additional tools that 
could help us in representing the outcomes of large series of 
experiments, as we have in the Error Plot (Figure 5), but still 
giving us some of the detailed information on the output 
patterns produced by the network, in a similar way as we 
have in the LSDs (Figure 4). A practical way that we used 
for that was by developing a histogram tool for the joint 
representation of the network outputs and the statistics on the 
final states.  
   Figure 6 shows some of these “Graphic Histograms”, used 
in showing the statistical scenario in pattern recovery 
experiments dealing with different levels of prompting noise. 
We call this tool a Graphic Histogram because, in it, each 
frequency of occurrence of an output binary string is 
accompanied by a graphical representation of the string 
itself. We can use the Graphic Histograms for the analysis of 
the repertoire of final states that emerge during the 
experiments with high levels of noise, as well as for the 
analysis of experiments with random initial conditions, so 
that we can evaluate the relative frequencies of occurrence 
for each final state and detect unplanned preferential 
attractors in the network.  
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Fig. 6. Three Graphic Histograms, showing the relative frequency (vertical 
scale, from 0% to 100%) of each output pattern generated by the associative 
network, as a result of prompting inputs corrupted by analog noise. The 
noise factors are different and have increasing magnitudes: less than 0.35 in 
(a), 0.4 in (b), and 0.5 in (c).  

   In the experiments represented in Figure 6, we have used as 
prompting patterns a balanced mixture of all the programmed 
patterns (all of them are given to the input of the network 
with the same frequency), corrupted by a certain level of 
analog noise. The first of these histograms (a) represents 
experiments with analog noise factors no larger than 0.35. 
The second histogram (b) corresponds to a noise factor of 0.4 
and the third one (c) corresponds to the noise factor 0.5. In 
these graphic histograms, the binary patterns produced at the 
output of the network, coded in the final trajectories of the 
state variables of the network, appear ordered from the more 
frequent one to the less frequent one. The value of the 
relative frequency of each output pattern appears in the 
vertical axis represented in a scale from 0% to 100%. The 
line linking the circles shows the relative frequencies of the 
recovered patterns in the experiments with noisy promptings. 
The bolded outcomes represent planned attractors, i.e., stored 
patterns, and the other ones represent spurious attractors, 
including mirror patterns and other spurious patterns as well. 
   Using this technique, it is possible to easily verify the 
unbalanced power of the different network attractors, it is 
easy to identify the programmed patterns among all the 
patterns considered in the histogram, and it is easy to check 
similarities and differences between the programmed patterns 
and each spurious pattern appearing in the repertoire of 
network outcomes. We have thus a practical and easy to use 
tool, for the exploration of the “landscape of attractors”.  
   We can see in Figure 6 that for reduced levels of noise, up 
to 0.35 (part (a) of the figure), only the stored patterns are 
produced at the output, all of them with the same relative 
frequency (33%). When we go to intermediate levels of 
noise, such as the experiments with noise factor 0.4, as in 
part (b) of Figure 6, the stored patterns are still the 
predominant ones in the histograms, appearing as the three 
more frequent patterns (35%, 32% and 28%), although other 
patterns, in addition to the stored ones, start to appear at the 
output, as a result of the significant level of noise. We also 
observe the appearance of some small unbalance in the 
power of attraction of the three principal attractors.  
   Finally, for experiments with large noise factors, such as 
the ones represented in Figure (c), not only the stored 
patterns (which are at the positions #1, #2 and #5) appear 
with significant frequencies in the initial part of the 
histogram, but also mirror patterns and other spurious 
patterns as well. We can see in this third histogram a 
dramatic unbalance in the power of attraction of the several 
stored patterns, with one of them being recovered in 45% of 
the experiments. Graphical Histograms for higher levels of 
analog noise in the prompting initial conditions were also 
obtained, and the unbalance of the attractors became still 
more dramatic. Therefore, high levels of analog noise induce 
the appearance of strongly preferential attractors.  
   Although not included here due to limitation of space, 
another related series of experiments that we have done and 



that helped us in finding the reasons for the preferential 
attractors mentioned above is related to what we call “digital 
noise”. In this form of experiment, the only type of distortion 
imposed to the initial conditions is the flipping of a certain 
percentage of bits in the input binary pattern, i.e., a certain 
percentage of the initial conditions that should be set x0 = A 
= 0.81 are changed to x0 = B = 0.50, and the same percentage 
of the initial conditions that should be set x0 = 0.50 are 
changed to x0 = 0.81.  
   We performed experiments with digital noise and obtained 
Error Plots and Graphic Histograms, as we did for analog 
noise (Figures 5 and 6 above). Although the Error Plots for 
digital noise have shown that the performance of recovery 
also decayed under situations of high digital noise, as 
expected, the Graphical Histograms for experiments with 
high levels of digital noise revealed a much better balance 
among the patterns generated at the output, as compared to 
the similar experiments with analog noise. The contrast 
between the Graphic Histograms for initial conditions with 
digital noise and the histograms for initial conditions with 
analog noise indicated that the attractors landscape for 
experiments with analog prompting noise favors certain 
patterns with respect to the others in a marked way. That 
didn’t happened so heavily when the noise was purely 
digital, even when the number of flipped bits grew to high 
levels. This indicates that the phenomenon of preferential 
attractors is more related to the nature of the excursion 
allowed to the distorting signal than to its magnitude. 
Regarding this comment, notice that in experiments with 
digital noise with 50% of the bits flipped, we have that half 
of the x0 that should be A are changed to B and vice versa, 
this implying that the equivalent factor of analog noise 
(<|noise|> / |A-B|) is 0.5. Nevertheless, the observed 
unbalance among recovered patterns is much less significant 
in such a situation of digital noise than it is in a purely 
random analog noise with the same factor 0.5. This made us 
to look in more detail to the basins of attractions of the 
logistic map, our RPE node, in order to understand why is 
that similar levels of analog noise and digital noise can lead 
to so different scenarios of unbalance of attractors. 
 
 
IV. STUDYING THE FRAGMENTED BASINS OF ATTRACTION IN 

LOGISTIC BIFURCATING RPES NODES  
 
   Our next steps in the understanding of the observed 
preferential attractors came from the analysis of the isolated 
logistic recursion in what respects the sets of values of initial 
conditions x0 that result in each one of the two limit cycles 
used to represent binary zeros and binary ones. Experiments 
for the mapping of these two sets reveal that they have 
inconvenient features with regard to the setting of initial 
conditions which are distorted by analog noise.  
   In order to prepare the setting for the discussion that 
follows, it is important first to remember that the RPE nodes 

represent information through period-2 cycles involving the 
values A and B described before (Sections II and III), and 
also to remember that the associative network relies on the 
attractor behavior of the RPEs in order to promote immunity 
to noise in the recovery of distorted versions of the stored 
patterns presented at the network input. At the single node 
level, this ingredient (attractor behavior) means that we have 
tolerance to limited deviations in the initial condition with 
respect to the ideal values x0 = A = 0.81 and x0 = B = 0.50, 
i.e., those values of x0 which would instantaneously lead to 
the desired patterns of cycling that represent either a binary 
one or a binary zero. In particular, values of the initial 
conditions close to A and B will cause a limited transitory 
which will disappear in the long term, as illustrated in the 
parts (a) and (b) of Figure 7. In these two parts of the figure, 
we have experiments with the initial condition set to x0 = 
0.85 =  A+0.04 and x0 = 0.45 = B-0.05, i.e., initial conditions 
just a bit outside the segment AB.  
 
 

 A = 0.81 x0 = 0.85

(a)

 B = 0 .5 x0 = 0.45
(b)

 x0 = 0.30
(c)

 A = 0.81

 
Fig 7. Long term phases of oscillation with different choices for the 
initial conditions. In (a), we have an x0 value which is close to A and 
thus leads to the same long term behavior as x0 = A does. In (b), we 
have an x0 value which is close to B and leads to the same long term 
behavior as x0 = B does. In (c), we have an x0 value which is not so 
close to either A or B. Although its distance to B is smaller than its 
distance to A, it leads to the same long term behavior as x0 = A does. 



   If we perform similar experiments with x0 values inside the 
AB segment, we observe the existence of a boundary at x0 = 
0.69 and a bipartition of the segment AB: an “upper part” of 
the segment, [0.69,0.81=A], which defines initial conditions 
that promote a certain phase of oscillation in the long term, 
and a “lower part” of the segment, [B=0.50,0.69], which 
defines initial conditions that promote the opposite phase of 
oscillation in the long term. This boundary corresponds to the 
fixed point defined by the condition xn+1 = xn = p . xn . (1-xn), 
which for p = 3.25 is unstable [13]. Initial conditions right 
above this unstable fixed point result in period-2 long term 
behavior with a given phase of oscillation, and initial 
conditions right bellow it result in period-2 long term 
behavior with the opposite phase of oscillation.  
   Notice that the bipartition defined by the frontier at 0.69 is 
not valid for the whole range [0,1] of possible initial 
conditions, but only for those initial conditions inside the 
segment AB or in its neighborhood. If, for example, in the 
process of decreasing the value of x0, we go lower and lower, 
beyond the value B = 0.50 and more, we find that for values 
of x0 around 0.31, the basin of attraction for B ends, and after 
that, the basin of attraction for A restarts, even though we are 
working with values of x0 that are closer to B. This 
“switching back” of the phase of cycling is illustrated 
through the part (c) of Figure 7, where we have an 
experiment with x0 = 0.30 leading to the same phase of 
oscillation as an experiment with  x0 = A = 0.81 does, 
although x0 = 0.30 is clearly much closer to B = 0.50  than it 
is to A = 0.81. This secondary boundary, 0.31, corresponds to 
a value of x0 that after one iteration of the logistic map 
produces x1 = 0.69, i.e., the value that corresponds to the 
main boundary discussed above. This explains the fact that 
initial conditions right above 0.31 and initial conditions right 
bellow 0.31 generate two opposite phases of period-2 
oscillation in the long term, defining thus a new frontier 
between the two basins of attractions.   
   If we study the attraction basins in an exhaustive manner, 
i.e., exploring all the values of x0 in the range [0,1] and 
observing what are the emerging long term patterns of 
oscillation, as we have done for the three cases of x0 
represented in Figure 7, we observe the following features 
regarding the sets of values of x0 that compose the two 
attractors under study [13]: 
 

• These two sets are not symmetric with respect to the 
coding values associated to binary zeros and binary 
ones (the values A and B discussed in Sections II and 
III). Notice for example that the main boundary at 0.69 
is not exactly equal to (A+B)/2. 

• In addition, they do not correspond to two convex sets, 
having a fragmented structure. Initial conditions closer 
to A can be part of the attraction region associated to B 
and vice versa, in an interleaved structure of both 
basins. 

   Figure 8 shows a diagram illustrating this fragmented 
nature of the basins of attraction that we observe in this 
process of mapping the attractors related to A and B. One of 
these basins is labeled here “basin for A”, meaning that this 
basin is associated to the phase of oscillation which emerges 
for experiments with x0 = A. Similarly, we have another 
basin associated to the other phase of period-2 oscillation, 
labeled “basin for B”, and associated to the same phase of 
oscillation that emerges with x0 = B. 
   In fact we can verify that we have a fractal structure in the 
fragmented sets that define the basins of attraction for A and 
B, with both sets repeatedly interleaving with each other, as 
we depart more and more from A upwards to 1, as well as 
when we depart more and more from B downwards to 0. This 
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Fig. 8. Mapping the two basins of attraction associated to the long term 
cyclic trajectory for xn in the logistic map. Depending on the value of the 
initial condition x0, we have the state variable of the recursive map settling 
in one of two possible phases of oscillation. These two basins are identified 
in the above diagram through the alternating bands with wither and darker 
patterns. 
 
fractal structure is confirmed by repeated experiments in 
which the step used for the sweep of the x0 in the 
experiments is reduced more and more, as we approach the 
limit values x0 = 1 and x0 = 0, which are accumulation points 
for the repeated boundaries between the two basins. In 
particular, as we approach the x0 = 0, one of these two  
accumulation points for the repeated boundaries among the 
alternating bands of the basin for A and the basin for B, we 
can verify that the values x0 for consecutive boundaries 
between the bands is always scaled down by a factor of 3.25. 
Notice that this value of scaling for the location of successive 



boundaries is exactly the same as the value of the bifurcation 
parameter of the logistic map that we are using (i.e., p = 
3.25).  
   The main conclusion of this analysis of the two basins of 
attraction in the logistic RPE is that allowing the initial 
conditions to go beyond a large distance from the segment 
AB will result in losing the control of the phase of cycling in 
the long term behavior of the period-2 attractor, what is not 
good for the operation of the associative RPEs network, since 
it relies on that phase of cycling for the coding of 
information. Of course, the phenomena of basins of attraction 
in a population of coupled RPE elements is much more 
complex than what we have in the isolated logistic map. 
Nevertheless, the fact that the basins of attraction of the 
isolated node are fragmented (not composed by convex sets) 
is a good indication for possible similar phenomena 
happening at the global scale. As a consequence of this 
reasoning, we decided to do experiments and to adopt design 
strategies in which the prompting the RPE nodes with values 
in the “fuzzy” parts of the basins of attraction is avoided. 
 
 

V. APPLYING “SOFT CLAMPING” FOR IMPROVED PATTERN 
RECOVERY ABILITY  

 
   The analysis of the previous section indicates the 
convenience of using some kind of clamping pre-processing 
on the noisy initial conditions xi,0, so to restrict them to a 
range of values in which the fractal forms of the basins of 
attraction discussed above would not be present. In this way, 
we can restrict the setting of initial conditions to convex sub-
regions of attraction that are associated to the representation 
of zeros and ones. This clamping is in fact relatively simple 
to implement, since all the fragmented regions of the two sets 
are clearly apart from the segment AB. 
   With the clamping pre-processing, also named “soft 
clamping pre-processing” as justified ahead, we are able to 
improve the results for analog noise environments in a large 
extent, as it can be verified by producing a new Error Plot as 
the one previously presented in Figure 5, but this time for 
experiments involving networks operating with the soft 
clamping in their initial conditions. This important 
improvement result is presented in Figure 9, where we have 
the contrast between two Error Plots, showing that with the 
soft clamping technique (lower curve in the Figure), the 
Hamming error in the recovery of patterns under high levels 
of noise is reduced by factors of 10 or more, taking as 
reference the output errors obtained in the previous results 
presented in the Error Plot of Figure 5, where no clamping 
pre-processing was applied. Such a previous Error Plot is 
also reproduced here in Figure 9 for comparison, in its upper 
curve. 
   Notice that the proposed mechanism of clamping does not 
try to fix the values of the initial conditions exactly at A and 

B through simple discretization of x0 at one of these two 
values. This would in fact correspond to artificially remove a 
large part of the analog noise, what is something not feasible 
in a number of realistic implementations, such as in 
electronic hardware for example, where technological 
difficulties for the imposition of precise values of the xi,0 are 
usually present [14,15]. On the contrary, the clamping of the 
initial conditions here discussed can be done in a relatively 
liberal way, what justifies thus the name that we have chosen 
for it: “soft clamping”. This can be confirmed through a 
series of experiments with different lengths for the ranges of 
allowed x0 values, i.e., experiments involving different limits 
for the clamping of the initial conditions. Table II shows the 
results of the output Hamming error for a fixed level of 
prompting analog noise (noise factor 0.5), and 8 different 
sizes of clamping ranges. The extension of the range 
[lower_clamp, upper_clamp] in these experiments goes from 
values as small as 0.2 times |A-B| to values as large as 1.6 
times |A-B|, as listed in the first row of Table II.  
 

 
 

 

Fig. 9. Contrast involving two Error Plots, for arbitrary levels of noise in the 
prompting conditions. The horizontal axis shows the analog noise factor at 
the input (<|noise|> / |A-B|). The vertical axis shows the recovery error. The 
contrast of the two plots shows the performance improvement brought by 
the soft clamping of the initial conditions (lower Error Plot among the two) 
with respect to the performance obtained for associative networks without 
any control on the noisy initial conditions (upper Error Plot, already 
presented before in Figure 5). 
 
 
 

Table II – Hamming Recovery Error (second row) versus 
normalized clamping range for analog noise factor 0.5.  

 

 range / 
 |A-B|  

 

 
0.2  

 
0.4 

 
0.6 

 
0.8 

 
1.0 

 
1.2 

 
1.4 

 
1.6 

 

Hamming 
error 

 

 

35% 
 

2% 
 

2% 
 

2% 
 

1% 
 

1% 
 

1% 
 

20% 
 



   In the first and last columns of Table II, where the output 
error goes up to 35% and 20%, we are clearly dealing with 
extreme cases, in which the clamping is not producing any 
help. The first of these extremes, i.e., range = 0.2 |A-B|, 
corresponds to experiments were we are excessively 
reducing the imprinting of the initial conditions by the 
prompting pattern. The other extreme, range = 1.6  |A-B|, 
corresponds to experiments in which we are not clamping 
enough the initial conditions so to make the coupled RPEs 
avoid the fragmented parts of the relevant basins of 
attraction.  
   On the other hand, if we exclude the extremes of the table 
and we only look at values of the ratio (range / |A-B| ) from 
0.4 to 1.4, the results of the clamping pre-processing are 
excellent, all of them with performance numbers which are 
similar to the ones represented in the lower curve of the 
contrastive graph presented in the Figure 9. Therefore, the 
proposed mechanism of clamping, or perhaps more 
appropriately named “soft clamping”, due to the wide 
flexibility on the definition of the clamping boundaries, only 
imposes that the values of xi,0 are set inside a reasonable 
generous range of values, of length approximately |A-B| ± 
40%, thus including the segment AB and a large part of its 
surroundings. Notice that this wide tolerance to the input 
noise certainly gives us the possibility of modeling with 
comfort a large variety of situations of imprecise definition 
of the initial conditions xi,0.  

 
 

VI. CONCLUSIONS 
 

   An important result of the analysis and experimental 
studies here presented was that we could define simple 
modifications in the mode of operation of associative RPEs 
networks under noisy initial conditions which resulted in a 
significant performance improvement. By “soft clamping” 
the noisy analog initial condition, having, for example, as the 
lower limit 0.44 and as the upper limit 0.86, we can increase 
the average performance of the system when operating with 
high levels of analog noise by a factor of 12, with the 
average Hamming error in the recovered pattern dropping  
from 63 % to 5 % – this is the case for analog noise factor 
1.0. The feature of the fragmented basins of attraction of the 
recursive nodes was identified as an important source of 
network degradation. The detection of the phenomenon and 
the definition of clamping regions so to create clean convex 
regions for the attractor for the binary zero limit cycle and 
the attractor for the binary one limit cycle was enough to 
obtain a very useful result, i.e., the improvement of the 
immunity to analog noise in large amounts. The final result 
of this very simple mechanism was a dramatic improvement 
in the associative network performance.  
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